任务容错#

任务可能因为不同应用级别的错误而失败,例如 Python 级别的异常, 或者系统级别的故障,例如机器故障。 在这里,我们将描述应用程序开发人员可以使用的机制来从这些错误中恢复。

捕捉应用级别的失败#

Ray 将应用程序级别的失败作为 Python 级别的异常呈现出来。当一个任务在远程工作器 或者 actor 上因为 Python 级别的异常而失败时, Ray 会将原始异常包装在 RayTaskError 中,并将其作为任务的返回值存储。 这个包装的异常将被抛出给任何尝试获取结果的工作器, 无论是通过调用 ray.get 还是如果工作器正在执行依赖于该对象的另一个任务。


import ray

@ray.remote
def f():
    raise Exception("the real error")

@ray.remote
def g(x):
    return


try:
    ray.get(f.remote())
except ray.exceptions.RayTaskError as e:
    print(e)
    # ray::f() (pid=71867, ip=XXX.XX.XXX.XX)
    #   File "errors.py", line 5, in f
    #     raise Exception("the real error")
    # Exception: the real error

try:
    ray.get(g.remote(f.remote()))
except ray.exceptions.RayTaskError as e:
    print(e)
    # ray::g() (pid=73085, ip=128.32.132.47)
    #   At least one of the input arguments for this task could not be computed:
    # ray.exceptions.RayTaskError: ray::f() (pid=73085, ip=XXX.XX.XXX.XX)
    #   File "errors.py", line 5, in f
    #     raise Exception("the real error")
    # Exception: the real error

使用 状态 API CLIray list tasks 来查询任务退出详情:

# This API is only available when you download Ray via `pip install "ray[default]"`
ray list tasks
======== List: 2023-05-26 10:32:00.962610 ========
Stats:
------------------------------
Total: 3

Table:
------------------------------
    TASK_ID                                             ATTEMPT_NUMBER  NAME    STATE      JOB_ID  ACTOR_ID    TYPE         FUNC_OR_CLASS_NAME    PARENT_TASK_ID                                    NODE_ID                                                   WORKER_ID                                                 ERROR_TYPE
 0  16310a0f0a45af5cffffffffffffffffffffffff01000000                 0  f       FAILED   01000000              NORMAL_TASK  f                     ffffffffffffffffffffffffffffffffffffffff01000000  767bd47b72efb83f33dda1b661621cce9b969b4ef00788140ecca8ad  b39e3c523629ab6976556bd46be5dbfbf319f0fce79a664122eb39a9  TASK_EXECUTION_EXCEPTION
 1  c2668a65bda616c1ffffffffffffffffffffffff01000000                 0  g       FAILED   01000000              NORMAL_TASK  g                     ffffffffffffffffffffffffffffffffffffffff01000000  767bd47b72efb83f33dda1b661621cce9b969b4ef00788140ecca8ad  b39e3c523629ab6976556bd46be5dbfbf319f0fce79a664122eb39a9  TASK_EXECUTION_EXCEPTION
 2  c8ef45ccd0112571ffffffffffffffffffffffff01000000                 0  f       FAILED   01000000              NORMAL_TASK  f                     ffffffffffffffffffffffffffffffffffffffff01000000  767bd47b72efb83f33dda1b661621cce9b969b4ef00788140ecca8ad  b39e3c523629ab6976556bd46be5dbfbf319f0fce79a664122eb39a9  TASK_EXECUTION_EXCEPTION

重试失败的任务#

当一个 worker 执行一个任务时,如果 worker 意外死亡,可能是因为进程崩溃或者机器故障, Ray 会返回任务直到任务成功或者重试次数超过最大次数。默认的重试次数是 3,并可再 @ray.remote 构造器中 指定 max_retries 来覆盖。指定 -1 允许无限重试,0 禁用重试。要覆盖所有提交任务的默认重试次数, 请设置操作系统环境变量 RAY_TASK_MAX_RETRIES。 例如,通过将其传递给驱动程序脚本或使用 运行时环境

你可以通过运行以下代码来尝试这种行为。

import numpy as np
import os
import ray
import time

ray.init(ignore_reinit_error=True)

@ray.remote(max_retries=1)
def potentially_fail(failure_probability):
    time.sleep(0.2)
    if np.random.random() < failure_probability:
        os._exit(0)
    return 0

for _ in range(3):
    try:
        # If this task crashes, Ray will retry it up to one additional
        # time. If either of the attempts succeeds, the call to ray.get
        # below will return normally. Otherwise, it will raise an
        # exception.
        ray.get(potentially_fail.remote(0.5))
        print('SUCCESS')
    except ray.exceptions.WorkerCrashedError:
        print('FAILURE')

当一个任务返回一个结果到 Ray 对象存储时,可能会丢失结果对象, 原始任务已经完成之后。 这种情况下,Ray 也会尝试通过重新执行创建对象的任务来自动恢复对象。 这可以通过相同的 max_retries 选项进行配置。 参考 对象容错 获取更多信息。

默认的,Ray 不会 重试应用程序代码抛出的异常。 但是,你可以通过 retry_exceptions 参数控制应用程序级别的错误是否重试, 甚至 哪些 应用程序级别的错误重试。默认情况下,这是 False。 要启用应用程序级别错误的重试,设置 retry_exceptions=True 来重试任何异常,或者传递一个可重试异常的列表。 示例如下。

import numpy as np
import os
import ray
import time

ray.init(ignore_reinit_error=True)

class RandomError(Exception):
    pass

@ray.remote(max_retries=1, retry_exceptions=True)
def potentially_fail(failure_probability):
    if failure_probability < 0 or failure_probability > 1:
        raise ValueError(
            "failure_probability must be between 0 and 1, but got: "
            f"{failure_probability}"
        )
    time.sleep(0.2)
    if np.random.random() < failure_probability:
        raise RandomError("Failed!")
    return 0

for _ in range(3):
    try:
        # If this task crashes, Ray will retry it up to one additional
        # time. If either of the attempts succeeds, the call to ray.get
        # below will return normally. Otherwise, it will raise an
        # exception.
        ray.get(potentially_fail.remote(0.5))
        print('SUCCESS')
    except RandomError:
        print('FAILURE')

# Provide the exceptions that we want to retry as an allowlist.
retry_on_exception = potentially_fail.options(retry_exceptions=[RandomError])
try:
    # This will fail since we're passing in -1 for the failure_probability,
    # which will raise a ValueError in the task and does not match the RandomError
    # exception that we provided.
    ray.get(retry_on_exception.remote(-1))
except ValueError:
    print("FAILED AS EXPECTED")
else:
    raise RuntimeError("An exception should be raised so this shouldn't be reached.")

# These will retry on the RandomError exception.
for _ in range(3):
    try:
        # If this task crashes, Ray will retry it up to one additional
        # time. If either of the attempts succeeds, the call to ray.get
        # below will return normally. Otherwise, it will raise an
        # exception.
        ray.get(retry_on_exception.remote(0.5))
        print('SUCCESS')
    except RandomError:
        print('FAILURE AFTER RETRIES')

使用 状态 API CLIray list tasks -f task_id=<task_id> 来查询任务退出详情:

# This API is only available when you download Ray via `pip install "ray[default]"`
ray list tasks -f task_id=16310a0f0a45af5cffffffffffffffffffffffff01000000
======== List: 2023-05-26 10:38:08.809127 ========
Stats:
------------------------------
Total: 2

Table:
------------------------------
    TASK_ID                                             ATTEMPT_NUMBER  NAME              STATE       JOB_ID  ACTOR_ID    TYPE         FUNC_OR_CLASS_NAME    PARENT_TASK_ID                                    NODE_ID                                                   WORKER_ID                                                 ERROR_TYPE
 0  16310a0f0a45af5cffffffffffffffffffffffff01000000                 0  potentially_fail  FAILED    01000000              NORMAL_TASK  potentially_fail      ffffffffffffffffffffffffffffffffffffffff01000000  94909e0958e38d10d668aa84ed4143d0bf2c23139ae1a8b8d6ef8d9d  b36d22dbf47235872ad460526deaf35c178c7df06cee5aa9299a9255  WORKER_DIED
 1  16310a0f0a45af5cffffffffffffffffffffffff01000000                 1  potentially_fail  FINISHED  01000000              NORMAL_TASK  potentially_fail      ffffffffffffffffffffffffffffffffffffffff01000000  94909e0958e38d10d668aa84ed4143d0bf2c23139ae1a8b8d6ef8d9d  22df7f2a9c68f3db27498f2f435cc18582de991fbcaf49ce0094ddb0

取消不当行为的任务#

如果任何任务挂起,你可能希望取消任务以继续进行。你可以通过调用 ray.cancel 来取消任务的 ObjectRef。 默认的,如果任务的 worker 正在执行中,这将发送一个 KeyboardInterrupt 给任务的 worker。 传递 force=Trueray.cancel 将强制退出 worker。查看 API 参考ray.cancel 获取更多细节。

请注意,目前 Ray 不会自动重试已取消的任务。

有时,应用程序级别的代码可能会导致 worker 在重复执行任务后发生内存泄漏,例如由于第三方库中的错误。 为了在这些情况下取得进展,你可以在任务的 @ray.remote 装饰器中设置 max_calls 选项。 一旦 worker 执行了给定远程函数的这么多调用,它将自动退出。默认情况下,max_calls 设置为无限大。