数据迭代
Contents
数据迭代#
Ray Data 允许您迭代数据行或批量迭代数据。
本指南向您展示如何:
迭代行#
要迭代数据集的行,请调用
Dataset.iter_rows()。Ray Data 将每一行表示为一个字典。
import ray
ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
for row in ds.iter_rows():
print(row)
{'sepal length (cm)': 5.1, 'sepal width (cm)': 3.5, 'petal length (cm)': 1.4, 'petal width (cm)': 0.2, 'target': 0}
{'sepal length (cm)': 4.9, 'sepal width (cm)': 3.0, 'petal length (cm)': 1.4, 'petal width (cm)': 0.2, 'target': 0}
...
{'sepal length (cm)': 5.9, 'sepal width (cm)': 3.0, 'petal length (cm)': 5.1, 'petal width (cm)': 1.8, 'target': 2}
批量迭代#
一个批次包含来自多行的数据。通过调用以下方法之一迭代不同格式的批量数据集:
import ray
ds = ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
for batch in ds.iter_batches(batch_size=2, batch_format="numpy"):
print(batch)
{'image': array([[[[...]]]], dtype=uint8)}
...
{'image': array([[[[...]]]], dtype=uint8)}
import ray
ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
for batch in ds.iter_batches(batch_size=2, batch_format="pandas"):
print(batch)
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
...
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 6.2 3.4 5.4 2.3 2
1 5.9 3.0 5.1 1.8 2
import ray
ds = ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
for batch in ds.iter_torch_batches(batch_size=2):
print(batch)
{'image': tensor([[[[...]]]], dtype=torch.uint8)}
...
{'image': tensor([[[[...]]]], dtype=torch.uint8)}
import ray
ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
tf_dataset = ds.to_tf(
feature_columns="sepal length (cm)",
label_columns="target",
batch_size=2
)
for features, labels in tf_dataset:
print(features, labels)
tf.Tensor([5.1 4.9], shape=(2,), dtype=float64) tf.Tensor([0 0], shape=(2,), dtype=int64)
...
tf.Tensor([6.2 5.9], shape=(2,), dtype=float64) tf.Tensor([2 2], shape=(2,), dtype=int64)
通过 shuffling 批量迭代#
Dataset.random_shuffle 速度很慢,因为它会打乱所有行。
如果不需要完整的全局混洗,您可以通过指定在迭代期间将行子集混洗到提供的缓冲区大小
local_shuffle_buffer_size。虽然这不是真正的全局随机播放
random_shuffle,但它的性能更高,因为它不需要过多的数据移动。
Tip
要配置 local_shuffle_buffer_size,请选择实现足够随机性的最小值。
较高的值会导致更多的随机性,但代价是迭代速度较慢。
import ray
ds = ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
for batch in ds.iter_batches(
batch_size=2,
batch_format="numpy",
local_shuffle_buffer_size=250,
):
print(batch)
{'image': array([[[[...]]]], dtype=uint8)}
...
{'image': array([[[[...]]]], dtype=uint8)}
import ray
ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
for batch in ds.iter_batches(
batch_size=2,
batch_format="pandas",
local_shuffle_buffer_size=250,
):
print(batch)
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 6.3 2.9 5.6 1.8 2
1 5.7 4.4 1.5 0.4 0
...
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 5.6 2.7 4.2 1.3 1
1 4.8 3.0 1.4 0.1 0
import ray
ds = ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
for batch in ds.iter_torch_batches(
batch_size=2,
local_shuffle_buffer_size=250,
):
print(batch)
{'image': tensor([[[[...]]]], dtype=torch.uint8)}
...
{'image': tensor([[[[...]]]], dtype=torch.uint8)}
import ray
ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
tf_dataset = ds.to_tf(
feature_columns="sepal length (cm)",
label_columns="target",
batch_size=2,
local_shuffle_buffer_size=250,
)
for features, labels in tf_dataset:
print(features, labels)
tf.Tensor([5.2 6.3], shape=(2,), dtype=float64) tf.Tensor([1 2], shape=(2,), dtype=int64)
...
tf.Tensor([5. 5.8], shape=(2,), dtype=float64) tf.Tensor([0 0], shape=(2,), dtype=int64)
分割数据集以进行分布式并行训练#
如果您正在执行分布式数据并行训练,请调用
Dataset.streaming_split 将数据集拆分为不相交的分片。
Note
如果您使用 Ray Train,则无需拆分数据集。 Ray Train 会自动为您分割数据集。要了解更多信息,请参阅 ML 训练数据加载指南。
import ray
@ray.remote
class Worker:
def train(self, data_iterator):
for batch in data_iterator.iter_batches(batch_size=8):
pass
ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
workers = [Worker.remote() for _ in range(4)]
shards = ds.streaming_split(n=4, equal=True)
ray.get([w.train.remote(s) for w, s in zip(workers, shards)])