Ray 生态系统
Ray 生态系统#
本页理出了与 Ray 分布式执行集成的库,按字母顺序排列。 将你自己的实现添加到列表非常容易。 只需打开一个带有几行文本的拉取请求,请参阅下面的下拉列表 以了解更多信息。
添加你的集成
要添加集成,只需将要添加的条目放到 GitHub
上的画廊 YAML 的 项目 列表中.
- name: 集成链接按钮文本
section_title: 此集成的节标题
description: 快速描述您的库及其与 Ray 的集成
website: 指向你网站的 URL
repo: 指向你在 GitHub 上的项目 URL
image: 指向你项目 logo 的 URL
以上!
Flambé is a machine learning experimentation framework built to accelerate the entire research life cycle. Flambé’s main objective is to provide a unified interface for prototyping models, running experiments containing complex pipelines, monitoring those experiments in real-time, reporting results, and deploying a final model for inference.
Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. With Ludwig, you can train a deep learning model on Ray in zero lines of code, automatically leveraging Dask on Ray for data preprocessing, Horovod on Ray for distributed training, and Ray Tune for hyperparameter optimization.
RayDP (“Spark on Ray”) enables you to easily use Spark inside a Ray program. You can use Spark to read the input data, process the data using SQL, Spark DataFrame, or Pandas (via Koalas) API, extract and transform features using Spark MLLib, and use RayDP Estimator API for distributed training on the preprocessed dataset.
Scikit-learn is a free software machine learning library for the Python programming language. It features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.
Sematic is an open-source ML pipelining tool written in Python. It enables users to write end-to-end pipelines that can seamlessly transition between your laptop and the cloud, with rich visualizations, traceability, reproducibility, and usability as first-class citizens. This integration enables dynamic allocation of Ray clusters within Sematic pipelines.