seldon-od-transformer¶
Chart to deploy an outlier detector as a transformer in an inference graph.
Usage¶
使用本chart,首先要添加 seldonio Helm 仓库:
helm repo add seldonio https://storage.googleapis.com/seldon-charts
helm repo update
一旦完成,你可以按照如下使用预估图模板:
helm template $MY_MODEL_NAME seldonio/seldon-od-transformer --namespace $MODELS_NAMESPACE
注意你也可以直接部署预估图到集群中: 使用:
helm install $MY_MODEL_NAME seldonio/seldon-od-transformer --namespace $MODELS_NAMESPACE
源码¶
设置值¶
键 |
类型 |
默认值 |
描述 |
|---|---|---|---|
model.image.name |
string |
|
|
model.name |
string |
|
|
name |
string |
|
|
outlierDetection.enabled |
bool |
|
|
outlierDetection.isolationforest.image.name |
string |
|
|
outlierDetection.isolationforest.load_path |
string |
|
|
outlierDetection.isolationforest.model_name |
string |
|
|
outlierDetection.isolationforest.threshold |
int |
|
|
outlierDetection.mahalanobis.image.name |
string |
|
|
outlierDetection.mahalanobis.max_n |
int |
|
|
outlierDetection.mahalanobis.n_components |
int |
|
|
outlierDetection.mahalanobis.n_stdev |
int |
|
|
outlierDetection.mahalanobis.start_clip |
int |
|
|
outlierDetection.mahalanobis.threshold |
int |
|
|
outlierDetection.name |
string |
|
|
outlierDetection.parameterTypes.load_path |
string |
|
|
outlierDetection.parameterTypes.max_n |
string |
|
|
outlierDetection.parameterTypes.model_name |
string |
|
|
outlierDetection.parameterTypes.n_components |
string |
|
|
outlierDetection.parameterTypes.n_stdev |
string |
|
|
outlierDetection.parameterTypes.reservoir_size |
string |
|
|
outlierDetection.parameterTypes.start_clip |
string |
|
|
outlierDetection.parameterTypes.threshold |
string |
|
|
outlierDetection.seq2seq.image.name |
string |
|
|
outlierDetection.seq2seq.load_path |
string |
|
|
outlierDetection.seq2seq.model_name |
string |
|
|
outlierDetection.seq2seq.reservoir_size |
int |
|
|
outlierDetection.seq2seq.threshold |
float |
|
|
outlierDetection.type |
string |
|
Type of outlier detector. Valid values are: |
outlierDetection.vae.image.name |
string |
|
|
outlierDetection.vae.load_path |
string |
|
|
outlierDetection.vae.model_name |
string |
|
|
outlierDetection.vae.reservoir_size |
int |
|
|
outlierDetection.vae.threshold |
int |
|
|
predictorLabels.fluentd |
string |
|
|
predictorLabels.version |
string |
|
|
replicas |
int |
|
|
sdepLabels.app |
string |
|